Real-time Motion Generation for Imaginary Creatures Using
Hierarchical Reinforcement Learning

Keisuke Ogaki
DWANGO Co., Ltd.
keisuke_ogaki@dwango.co.jp

ABSTRACT

Describing the motions of imaginary original creatures is an es-
sential part of animations and computer games. One approach to
generate such motions involves finding an optimal motion for ap-
proaching a goal by using the creatures’ body and motor skills.
Currently, researchers are employing deep reinforcement learning
(DeepRL) to find such optimal motions. Some end-to-end DeepRL
approaches learn the policy function, which outputs target pose
for each joint according to the environment. In our study, we em-
ployed a hierarchical approach with a separate DeepRL decision
maker and simple exploration-based sequence maker , and an ac-
tion token, through which these two layers can communicate. By
optimizing these two functions independently, we can achieve a
light, fast-learning system available on mobile devices. In addition,
we propose another technique to learn the policy at a faster pace
with the help of a heuristic rule. By treating the heuristic rule as
an additional action token, we can naturally incorporate it via Q-
learning. The experimental results show that creatures can achieve
better performance with the use of both heuristics and DeepRL
than by using them independently.
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1 INTRODUCTION

Different animals have different types of body structures and motor
skills. Their bodies and movements are suitable for their respec-
tive living environments. Humans can imagine, draw, and animate
creatures, such as dragons, Pegasi, or mermaids, which do not ex-
ist in reality. In this study, our goal is to generate creatures with
bodies and motions that are logically suited for different simulated
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Figure 1: Creatures with diverse bodies learning to move.
They have locomotion skills and can plan their movement
direction. Users can control them by feeding them.

environments. There exist some challenges in realizing realistic
creatures through simulations. These include learning of available
body structures for animals, developing motor skills with the gen-
erated bodies, and determining which creature survives in specific
environments, through simulations [Sims 1994]. In this study, we
focused on developing motor skills for imaginary creatures by using
machine learning techniques.

Deep reinforcement learning (DeepRL) can control a creature’s
motion by predicting future rewards; however, it takes a long time
to converge, and the result is slightly unstable, especially in a contin-
uous action space [Henderson et al. 2018]. As our goal is to observe
how creatures learn to move while inheriting and mutating their
bodies through generations, it is essential that each creature starts
moving at an early stage so that selection can be achieved. More-
over, we preferred our system to work on a mobile computer. We
employed a hierarchical approach using simple bandit algorithm
in addition to DeepRL. By using instant rewards, simple bandit
algorithm can be used to generate motion; although this cannot
maximize future rewards by itself, it can achieve fast convergence.

2 METHODOLOGY

Our main contribution is that our system enables tens of creatures
to learn to move using DeepRL, in a single mobile device. The
key technique is to incorporate the simple bandit algorithm with
DeepRL. Figure 2 shows an overview of our learning framework for
one creature. Our architecture is mainly composed of two parts, as
follows: decision maker 7%(s, t) and sequence maker 7°(¢, a). The
decision maker chooses discrete action token ¢t maximizing future
rewards r;i, while the sequence maker generates continuous
motion sequences a, thereby maximizing immediate rewards. This
can avoid the complexity of reinforcement learning.
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Figure 2: Overview of our framework. First, the decision
maker selects the action token according to the inputs. Then,
the sequence maker generates a motion sequence that is ap-
propriate for the creature’s body. Finally, the creature enacts
the sequence and returns the simulation result as feedback
to both the sequence maker and decision maker. Note that
the decision maker is divided into deepRL-based and rule-
based components.

The decision maker works based on predictive decision making
according to high-level rewards r? = r9 ... rj‘f]. It outputs the high-
level discrete action token t. Action token ¢ indicates the primitive
motions that the sequence maker can perform (e.g., go straight, turn
right, go right, and stay there). Each action token has an accompa-
nying reward function r®. By this simplification, we can directly
employ the deep Q-learning algorithm [Mnih et al. 2015].

The sequence maker generates a continuous motion sequence a
according to action token t decided by the decision maker, and it
learns actions according to immediate rewards r®. Action a is the
target pose in the next timestep for each joint.

Our system incorporates a heuristic rule with RL. Decision maker
7% treats 79 as its discrete action t’. When 7% is chosen, t is
decided with the associated rule.

In our system, action a is decided at a frequency lower than
the simulation frequency to save the computational cost. Instead
of generating a target pose for all the time series, our creatures
generate a target pose and their planned time in batches (Figure 2).

For simulating a virtual environment, we implemented this sim-
ulator using Unity!. Our source code for the simulator, creatures,
and learning are available for reproducing our experiments 2.

3 EXPERIMENTAL RESULT

We evaluated the cooperation of RL and a rule using a simple move-
to-eat situation. The experiment constituted only one creature and
a fixed amount of food items in the environment. Note that 30% of
the food items were fed at a higher point than the creatures can
reach. Once the creature reached the food item, another food item
spawned at a random point. Every food item disappeared after 300
s. We evaluated how much food the creatures could obtain in 30,000
s.

https://unity3d.com
Zhttps://github.com/dwango/rlcreature
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Figure 3: Total energy acquired after 30,000 s. Each bar
shows the mean and standard deviation of three trials. The
energy was evaluated for three types of decision makers, as
follows: a) RL only, b) Rule only, and c) the proposed method
representing a+b. We conducted this evaluation by using var-
ious bodies.

Figure 3 shows the amount of food items the creatures obtained
based on the three types of decision makers, as follows: a) rule x?
only, b) RL ¥ only, and c) both 7% and 79, As shown, for all types
of bodies, the proposed method combining 74 and 74 overcame
the baseline 7% and rule-based 7 . The rule-based decision maker
was too simple, such that the creatures always moved toward the
nearest food item, even if they could not reach it. However, the rule
helped creatures to learn the policy at an early stage, so the proposed
method worked better than using the reinforcement decision maker
alone.

4 DEMONSTORATION AND USER
EXPERIENCE

For the demonstration, we also present the system for designing
creatures. Following Sims’s [1994] approach, we provide a tech-
nique for generating a new creature by combining the body struc-
tures of two creatures. By repeating this process, users can obtain
the intended creatures.

We also provide the server where every creature generated by
the users live. Users can generate and train creatures on client
machines (smart-phones, PCs) and then send their creatures to the
server to see whether they survive against other ones. Our system
allows more than 30 creatures to live on a single machine.
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